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Motivation

® Boussinesq equations consist of the Navier—Stokes equations coupled to the
convection—diffusion equation for temperature

® Frequently used in modeling, designing, and controlling energy-efficient
building systems

® Building efficiency is essential to meet national energy and environmental
challenges

® Boussinesq systems are unstable for certain values of its parameters.

® We developed efficient feedback control strategies to stabilize the system and
optimize energy use in the building

® Stability analysis is necessary to understand the flow transition from stable to
turbulent regimes
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The model problem

Navier-Stokes-Boussinesq system

ou 2 Gr
E—&—u-Vu—&—Vp = Qv-s(u)—i—@Teg
or 1
Vu = 0

u(x,t) : velocity p(x,t): pressure 7(x,t): temperature
es = (0,1), ¢s = Tsin(2nz) cos(2my)

1
e(u) = i[Vu + Vu '] : strain tensor

2
Re =100, Cr= 1;—69 ~11111.1, Pr=0.7
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Domain and its boundary

We consider domain 2 = [0, 1] x [0, 1], with boundary I' =T";,, UT, UTy UT,.

Iy

inlet
inlet T,

outlet Iy
heating strip

i P

Ly Iy T

Ty, = {1} x [0.7,0.9]
', = {0} x [0.1,0.4]
'y =[0.4,0.6] x {0}
r,=T\ T UL, UTy)
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Boundary conditions
=0 on (FinUFQUFw) x (0,

2
—pn + ﬁe(u)n =0 on T,x

(
(
7=0 on (T;UTy) x(
1 or (

@%:O on (Fg UFO)X O7

Initial conditions

u(0) =ug, 7(0)=7 in Q.



Stationary problem

Let (us, Ts, ps) be a solution of stationary problem

us - Vus + Vpg

Us - VT
V- ug

Us

—psn + ies(u n
ps Re = °

Ts
1 07,
RePr On
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Locally refined mesh
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The mesh is refined near corners and at inlet/outlet portions of the boundary

Number of nodes = 7400, Number of degrees of freedom = 99991
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Stationary solution: Py — P, — P, FEM, refined mesh

® Solving steady Navier-Stokes at Re = 100 is numerically unstable
® Solve the steady Navier-Stokes on a sequence of Reynolds numbers

50 — 60 — 70 — 80 — 85 — 90 — 95 — 100

using solution from previous Re as initial guess in the Newton method.

e
(a) Velocity (b) Temperature (c) Pressure
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Stability of stationary solution

Add a small perturbation to stationary state
at the initial condition as a source term

or 1
Uo| _ |Us Ue — 4 u-V7r = AT+ ¢s+ ¢
ol = te ot RePr
0 Ts Te
¢ = eexp(—50(t — 2)?) sin(27z) cos(2my)
Evolution of velocity and temperature PE on log scale Evolution of velocity and PE on log scale

Perturbation energy
Perturbation energy

Energy in perturbations for velocity and temperature

1 1
E, == / lu —ug|?dz, E,=—- / |7 — 752
2 2
)

Q
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Boundary controls

To acheive stabilization, we apply velocity and temperature controls on I';;,
u=0 on (TyUTy,)x(0,T), u=(us,0) on Ty x(0,T)

n + 2 e(uyn =0 Ty, x (0,T)
Oy = — P = on o )
P Re

T=1 on Iy x(0,T), 7=0 on Iy, x(0,T)
1 or

Or = R Pron 0 on (TyUT,)x(0,T)

ue = fraly), 7e= f2B(y), (fi,[2) : control variables

/]

afy) = o (i) 6) =020 (- i)
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Finite dim feedback control approach

® Stationary state is unstable
» Small perturbation take the state away

® Aim: apply control to drive state towards stationary state

® Model perturbation z by linearization around stationary state

dz
Ma—Az—&-Bf

® Determine control by feedback law: f = —Kz to achieve
|z(t)]] — 0, as t— o0

e Determine feedback matrix K from associated ARE to achieve A — BK
stable (real()\) < 0)

® Use linear feedback law f = —Kz to the nonlinear model to study its ability
to stabilize the flow
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Linearized system

Let (v,0,p) = (u, 7, p) — (us, 7s, ps). The linearized system around (ug, 75, ps) is

2 .
g—;}+us-V1j+v-Vus+Vp:ﬁv-s(v)Jr%Geg in Qx(0,7)
ajJru Vo+wv-V *LAH in Qx(0,7)
ot : 7—SiRePr " ’

Viv=0 in Qx(0,7)

Boundary condition

v=0 on (TpUT,)x(0,T)

v=u. on Iy, x(0,7T) Initial condition

2
Uu:*anrRe)S(’U)n:O on I, x(0,7) v(0) = vo = ug — Us,
0=71. on FlnX(O,T) 0(0):90:7‘077'5 in Q
=0 on T, x(0,7)
1 00
Je—RePr%—O on (FQUFO)X(O,T)
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State space model

Semidiscrete linearized system (matrix form) using P> — P> — Py FEM

dv
Mvva = Ay + Ayl + A'upp + A'Uo'v v
do
Maea = Agov + Ape0 + Ago, 09
0=Agv, 0=Ay, v—By, f1, 0=A;, 06— By, fo

State space representation
dz
M— =Az+ B
W + Bf

Differential and algebraic parts
dy
Myyd* =Ayyy + Ayqq
t
T
0=Ayqy — Bys f

p
_|v — _ fl _ Moy 0 _ Apv
o R R A bl PR
0 0
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Eigenvalues of linearized operator

Eigenvalues of linearized operator from FEM

h A, Ao
1/50 0.0758321220 + 0.6947989626i
1/100 0.0802859545 + 0.6944522731i
1/150 0.0817657155 + 0.69436415881
1 ! . 1/200 0.0825035403 + 0.69431874631
LN R T locally refined | 0.0834556781 + 0.6945056097i
3 Extrapolation | 0.0847026210 + 0.69423510401

® The spectrum is characterized by two complex
conjugated eigenvalues.

® The two unstable eigenvalues are boxed.

® Positive real parts signifying that the linearized problem
is unstable to small perturbations.

Locally refined mesh predicts eigenvalues to good
accuracy with less computational cost.

® The number of dofs with 200 x 200 points on boundary
is 522804 while for locally refined mesh is 99991.
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Summary of computing feedback matrix

e Determine control by feedback law f = — Kz such that A — BK is stable
(real(\) < 0)

Form the matrices Ay, Ayq, Myy, Byy, A, B, M

Compute Byg = Ayy M, Ayg(A) M 1Ay ) " Byy

Define A, = EIAnyu, B, = EIByq

Solve Riccati equation for 7

Alm4+mA, —7B,BlT=0
e Compute feedback operator: K = (BT Z)7(Z] M,,)

@ P. CHANDRASHEKAR, M. RAMAsSwAMY, J.P. RAYMOND, R. SANDILYA,
Computers & Mathematics with Applications, 2021.

[3 L. THEVENET, PhD Thesis, 2009.
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Solving the Boussinesq equations

After spatial discretization: System of nonlinear ODE
~dz ) _y _|u A | Myy 0
ME_N(vaL Z_|:p:|a y_|:7_:|a M_|: 0 0

Time Solver: Classical backward difference formula with time step

hK 1
At = min —= = d
1?16171%1 uK’ UK ‘K‘/”u” x

K

First time step: BDF1 (Backward Euler)
ozt — 20

_ 1, p1 1 _ o X
M Atl _N(Z 7f)7 f _K(y ys) on F“’L

Second time step onwards: BDF2 forn =2,3,---

1 ~ 2r" +1 n n n—1 (,,,n)Q n—2 n, gn n A"
M — +1 + -—7 =N(z" = —
At (rn Flz (r )2 T”Jrlz (&5 /%), Atr—1

fn — K(y* . ys) on Fin7 y* _ yn—Q + (rn—l + 1)[2/"_1 o yn—2}

Nonlinear systems are solved using Newton Method and UMFPACK (LU solver).
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Control Strategies

® Numerical results for both the cases
» Distributed perturbation

¢ = eexp(—50(t — 2)?) sin(27x) cos(27y)

) =[] e ]

Obtain feedback by solving 2 x 2 Riccati equation for different shifts

» Initial perturbation

AIT( +TA, — WBUBJW =0, A,= EIAnyu + wl

® Test the role of shift parameter w by shifting first pair of eigenvalues

® Test the role of amplitude of perturbation €
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Numerical results: distributed perturbation

Role of shift parameter: w = {0,0.1,0.25,0.5,0.75,1}
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Numerical results: distributed perturbation

Role of amplitude of perturbation ¢ = {5, 10, 40,80, 160}
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Numerical results: initial perturbation

Role of shift parameter: w = {0,0.1,0.25,0.5,0.75,1}

Evolution of velocity PE on log scale Evolution of
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Control with ramp

Smooth ramp function

® Applying large control suddenly at initial time is undesirable.
® Introduce control smoothly over time via smooth ramp function f(¢)

A 0 if s<—1
f)=g (—) . g(s) = 40.5+5(0.9375 — s2(0.625 — 0.187552)) if —1<s<1

2 1 if s>1

Figure: A plot of function f(¢).
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Numerical results: initial perturbation

Role of amplitude of perturbation ¢ = {0.1,1,10}, w = 0.25
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Numerical results: initial perturbation

Role of amplitude of perturbation e = {0.1,1,10}, w = 0.25

Evolution of control
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Summary

® Unstable stationary solution

® Controls at inflow boundary

® Linearized system around the unstable stationary solution
® Unstable eigenvalues of linearized Boussinesq system

® Linear feedback law

® Feedback stabilization with different control strategies

® Numerical results

® Future perspective

» More efficient strategies for stabilizing the Boussinesq system
» Better numerics
» More general (parametrized) Boussinesq system
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